Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38133186

RESUMO

Under natural conditions, T-2 toxin can be easily metabolized to HT-2 toxin by deacetylation, and T-2 and HT-2 are usually co-contaminated in grain and feed at a high detected rate. Our previous information indicated that T-2 toxin could injure the function of the intestinal barrier, but the combined toxicity and mechanism of T-2 and HT-2 on the intestinal cells of porcines are still unknown. Therefore, we aimed to explore T-2 and HT-2 individually and combined on cellular viability, cell membrane integrity, the expression of tight junction-related proteins, and the generation of inflammatory factors in porcine intestinal epithelial cells (IPEC-J2). The results showed that T-2 and HT-2, individually or in combination, could induce a decrease in cell viability, an increase in LDH release and IL-1, IL-6, and TNF-α generation, and a decrease in the anti-inflammatory factor IL-10. Based on the analysis of immunofluorescence staining, real-time PCR, and western blotting, the tight junction protein expressions of Claudin-1, Occludin, and ZO-1 were significantly decreased in the T-2 and HT-2 individual or combination treated groups compared with the control. Furthermore, all the parameter changes in the T-2 + HT-2 combination group were much more serious than those in the individual dose groups. These results suggest that T-2 and HT-2, individually and in combination, could induce an intestinal function injury related to an inflammatory response and damage to the intestinal barrier function in porcine intestinal epithelial cells. Additionally, T-2 and HT-2 in combination showed a synergistic toxic effect, which will provide a theoretical basis to assess the risk of T-2 + HT-2 co-contamination in porcine feed.


Assuntos
Mucosa Intestinal , Toxina T-2 , Animais , Suínos , Toxina T-2/metabolismo , 60435 , Intestinos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Células Epiteliais
2.
Front Cell Infect Microbiol ; 13: 1105272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992686

RESUMO

Constipation is a common gastrointestinal symptom characterized by intestinal motility disorder. The effects of Platycodon grandiflorum polysaccharides (PGP) on intestinal motility have not been confirmed. We established a rat model of constipation induced by loperamide hydrochloride to elucidate the therapeutic effect of PGP on intestinal motility disorder and to explore the possible mechanism. After PGP treatment (400 and 800 mg/kg) for 21 d, PGP clearly relieved gastrointestinal motility, including fecal water content, gastric emptying rate, and intestinal transit rate. Moreover, the secretion of motility-related hormones, gastrin and motilin, were increased. Enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and immunofluorescence results confirmed that PGP significantly increased the secretion of 5-hydroxytryptamine (5-HT) and the expression of related proteins, such as tryptophan hydroxylase 1, 5-HT4 receptor, and transient receptor potential ankyrin 1. 16S rRNA gene sequencing showed that PGP significantly increased the relative abundance of Roseburia, Butyricimonas, and Ruminiclostridium, which were positively correlated with 5-HT levels. However, the relative abundance of Clostridia_UCG-014, Lactobacillus, and Enterococcus were decreased. PGP improved intestinal transport by regulating the levels of 5-HT, which interacts with the gut microbiota and the intestinal neuro-endocrine system, further affecting constipation. Overall, PGP is a potential supplement for the treatment of constipation.


Assuntos
Microbioma Gastrointestinal , Platycodon , Ratos , Animais , Loperamida/efeitos adversos , Serotonina , Platycodon/metabolismo , RNA Ribossômico 16S , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , Motilidade Gastrointestinal , Polissacarídeos/farmacologia
3.
Front Endocrinol (Lausanne) ; 14: 1078593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777345

RESUMO

The obesity epidemic has become a global problem with far-reaching health and economic impact. Despite the numerous therapeutic efficacies of Platycodon grandiflorum, its role in modulating obesity-related metabolic disorders has not been clarified. In this study, a purified neutral polysaccharide, PGNP, was obtained from Platycodon grandiflorum. Based on methylation and NMR analyses, PGNP was found to be composed of 2,1-ß-D-Fruf residues ending with a (1→2)-bonded α-D-Glcp. The protective effects of PGNP on high-fat HFD-induced obesity were assessed. According to our results, PGNP effectively alleviated the signs of metabolic syndrome, as demonstrated by reductions in body weight, hepatic steatosis, lipid profile, inflammatory response, and insulin resistance in obese mice. Under PGNP treatment, intestinal histomorphology and the tight junction protein, ZO-1, were well maintained. To elucidate the underlying mechanism, 16S rRNA gene sequencing and LC-MS were employed to assess the positive influence of PGNP on the gut microbiota and metabolites. PGNP effectively increased species diversity of gut microbiota and reversed the HFD-induced imbalance in the gut microbiota by decreasing the Firmicutes to Bacteroidetes ratio. The abundance of Bacteroides and Blautia were increased after PGNP treatment, while the relative abundance of Rikenella, Helicobacter were reduced. Furthermore, PGNP notably influenced the levels of microbial metabolites, including the increased levels of cholic and gamma-linolenic acid. Overall, PGNP might be a potential supplement for the regulation of gut microbiota and metabolites, further affecting obesity.


Assuntos
Microbioma Gastrointestinal , Platycodon , Animais , Camundongos , Platycodon/química , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo
4.
Toxins (Basel) ; 14(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36287951

RESUMO

Deoxynivalenol is one the of most common mycotoxins in cereals and grains and causes a serious health threat to poultry and farm animals. Our previous study found that DON decreased the production performance of laying hens. It has been reported that DON could exert significant toxic effects on the intestinal barrier and microbiota. However, whether the decline of laying performance is related to intestinal barrier damage, and the underlying mechanisms of DON induced intestine function injury remain largely unclear in laying hens. In this study, 80 Hy-line brown laying hens at 26 weeks were randomly divided into 0, 1, 5 and 10 mg/kg.bw (body weight) DON daily for 6 weeks. The morphology of the duodenum, the expression of inflammation factors and tight junction proteins, and the diversity and abundance of microbiota were analyzed in different levels of DON treated to laying hens. The results demonstrated that the mucosal detachment and reduction of the villi number were presented in different DON treated groups with a dose-effect manner. Additionally, the genes expression of pro-inflammatory factors IL-1ß, IL-8, TNF-α and anti-inflammatory factors IL-10 were increased or decreased at 5 and 10 mg/kg.bw DON groups, respectively. The levels of ZO-1 and claudin-1 expression were significantly decreased in 5 and 10 mg/kg.bw DON groups. Moreover, the alpha diversity including Chao, ACE and Shannon indices were all reduced in DON treated groups. At the phylum level, Firmicutes and Actinobacteria and Bacteroidetes, Proteobacteria, and Spirochaetes were decreased and increased in 10 mg/kg.bw DON group, respectively. At the genus levels, the relative abundance of Clostridium and Lactobacillus in 5 and 10 mg/kg.bw DON groups, and Alkanindiges and Spirochaeta in the 10 mg/kg.bw DON were significantly decreased and increased, respectively. Moreover, there were significant correlation between the expression of tight junction proteins and the relative abundance of Lactobacillus and Succinispira. These results indicated that DON exposure to the laying hens can induce the inflammation and disrupt intestinal tight junctions, suggesting that DON can directly damage barrier function, which may be closely related to the dysbiosis of intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Tricotecenos , Animais , Feminino , Anti-Inflamatórios/farmacologia , Galinhas/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Disbiose/induzido quimicamente , Disbiose/veterinária , Inflamação , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Intestinos , Lactobacillus , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Tricotecenos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Environ Sci Technol ; 56(19): 14069-14079, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126287

RESUMO

Nanofiltration (NF) membranes are playing increasingly crucial roles in addressing emerging environmental challenges by precise separation, yet understanding of the selective transport mechanism is still limited. In this work, the underlying mechanisms governing precise selectivity of the polyamide NF membrane were elucidated using a series of monovalent cations with minor hydrated radius difference. The observed selectivity of a single cation was neither correlated with the hydrated radius nor hydration energy, which could not be explained by the widely accepted NF model or ion dehydration theory. Herein, we employed an Arrhenius approach combined with Monte Carlo simulation to unravel that the transmembrane process of the cation would be dominated by its pairing anion, if the anion has a greater transmembrane energy barrier, due to the constraint of anion-cation coupling transport. Molecular dynamics simulations further revealed that the distinct hydration structure was the primary origin of the energy barrier difference of cations. The cation having a larger incompressible structure after partial dehydration through subnanopores would induce a more significant ion-membrane interaction and consequently a higher energy barrier. Moreover, to validate our proposed mechanisms, a membrane grafting modification toward enlarging the energy barrier difference of dominant ions achieved a 3-fold enhancement in ion separation efficiency. Our work provides insights into the precise separation of ionic species by NF membranes.


Assuntos
Desidratação , Nylons , Ânions/química , Cátions Monovalentes , Humanos , Simulação de Dinâmica Molecular
6.
J Parasitol ; 108(4): 301-305, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35877154

RESUMO

New antibabesial drugs are required to fight resistant parasites, and plant-derived natural products are a robust source. Six kinds of natural product extracts derived from herbal medicines that are traditionally used for the treatment of malaria were selected to test the antibabesial effect on Babesia gibsoni in vitro and in vivo. Parasitized blood was collected from dogs infected with B. gibsoni to evaluate the inhibitory effect of verbenalin, catechin hydrate, dihydrolycorine, embelin, ursolic acid, agrimol B, and bruceine H in vitro. The expression levels of the 18S rRNA gene in all drug-treated groups were determined by relative quantification using a real-time PCR method. Significant inhibition of the in vitro growth of B. gibsoni was observed after treatment by those natural product extracts (200 nM concentration) (P < 0.05). Catechin hydrate showed the highest activity in vitro due to the lowest expression levels of the 18S rRNA gene. The IC50 value of catechin hydrate against B. gibsoni was 273 nM. In B. gibsoni infected dogs, intravenous administrations of catechin hydrate and diminazene aceturate showed significant (P < 0.05) inhibition of B. gibsoni growth at a dose of 11 mg/kg and 10 mg/kg, respectively, compared to the control group. The results of our study may suggest that catechin hydrate may be a promising alternative to treat canine babesiosis caused by B. gibsoni.


Assuntos
Babesia , Babesiose , Produtos Biológicos , Catequina , Doenças do Cão , Animais , Babesia/genética , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Cães , RNA Ribossômico 18S/genética
7.
J Zhejiang Univ Sci B ; 21(6): 485-494, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32478494

RESUMO

Resveratrol (3,5,4'-trihydroxystilbene, RSV) has been widely used in mammalian cells, but whether it can be used during freezing boar semen is still unknown. The effects of RSV treatment during boar semen freezing on its anti-freezing ability, apoptosis, and possible apoptotic pathways were observed in this study. Sperm motility, mitochondrial membrane potential (ΔΨm), adenosine triphosphate (ATP) content, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic state, and messenger RNA (mRNA) expression levels of apoptotic genes involved in different apoptotic pathways after freezing with or without RSV treatment were tested. The results showed that: (1) Compared with fresh sperm, the motility, normal acrosome rate, and plasma membrane integrity rate of frozen boar sperm decreased significantly (P<0.05), and RSV did not significantly increase the sperm motility (0.44 vs. 0.40, P>0.05), but it did significantly improve the normal acrosome rate (57.65% vs. 47.00%, P<0.05) and plasma membrane integrity rate (46.67% vs. 38.85%, P<0.05). (2) After freezing, most boar sperm showed low mitochondrial ΔΨm. RSV treatment could increase the rate of high mitochondrial ΔΨm of boar sperm. (3) RSV treatment significantly decreased reactive oxygen species (ROS) levels (58.65% vs. 88.41%, P<0.05) and increased the ATP content (0.49 µmol/L vs. 0.25 µmol/L, P<0.05) of boar sperm during freezing. (4) The apoptotic rate of the freezing group (80.41%) with TUNEL detection increased significantly compared to the fresh group (9.70%, P<0.05), and RSV treatment greatly decreased the apoptotic rate (68.32%, P<0.05). (5) Real-time polymerase chain reaction (RT-PCR) showed that not only the genes from the death receptor-mediated apoptotic pathway (tumor necrosis factor-α (TNF-α), Fas ligand (FasL), and Caspase-8), but also the genes from the mitochondria-mediated apoptotic pathway (manganese superoxide dismutase (MnSOD), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-9) were both significantly changed after freezing. RSV treatment during freezing greatly changed their expression levels. Although RSV treatment during boar semen freezing did not significantly increase motility after thawing, it still played an efficient antioxidant role, which could enhance the mitochondrial function and decrease the apoptotic level induced by both the death receptor- and mitochondria-mediated apoptotic pathways.


Assuntos
Apoptose/efeitos dos fármacos , Resveratrol/farmacologia , Preservação do Sêmen/veterinária , Espermatozoides/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Animais , Masculino , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Suínos
8.
Cancer Cell Int ; 17: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033691

RESUMO

BACKGROUND: Glioblastoma is the most common and aggressive brain tumor associated with a poor prognosis. Plant homeodomain finger protein 20 (PHF20) is highly expressed in primary human gliomas and its expression is associated with tumor grade. However, the molecular mechanism by which PHF20 regulates glioblastoma remains poorly understood. METHODS: Genome wide gene expression analysis was performed to identify differentially expressed genes (DEGs) in U87 cells with PHF20 gene knockdown. Gene ontology (GO) and pathway enrichment analyses were performed to investigate the functions and pathways of DEGs. Pathway-net and signal-net analyses were conducted to identify the key genes and pathways related to PHF20. RESULTS: Expression of 540 genes, including FEN1 and CCL3, were significantly altered upon PHF20 gene silencing. GO analysis results showed that DEGs were significantly enriched in small molecule metabolic and apoptotic processes. Pathway analysis indicated that DEGs were mainly involved in cancer and metabolic pathways. The MAPK, apoptosis and p53 signaling pathways were identified as the hub pathways in the pathway network, while PLCB1, NRAS and PIK3 s were hub genes in the signaling network. CONCLUSIONS: Our findings indicated that PHF20 is a pivotal upstream regulator. It affects the occurrence and development of glioma by regulating a series of tumor-related genes, such as FEN1, CCL3, PLCB1, NRAS and PIK3s, and activation of apoptosis signaling pathways. Therefore, PHF20 might be a novel biomarker for early diagnosis, and a potential target for glioblastoma therapies.

9.
Rejuvenation Res ; 20(4): 263-277, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28093038

RESUMO

Extract of Salvia miltiorrhiza and Dalbergia Odorifera (SM-DOO) has been traditionally used for the prevention and treatment of cardiovascular diseases. However, information regarding the pharmacodyamic material basis and potential mechanism remain unknown. Male Sprague-Dawley rats were divided into four groups: Sham, Model, Diltiazem, and SM-DOO group, n = 6. Rats were pretreated with homologous drugs for 7 days, and then subjected to 30 minutes of ischemia followed by 180 minutes of reperfusion. Cardioprotection effects of SM-DOO on myocardial ischemia/reperfusion (MI/R) injury rats were examined by hemodynamics, infarct area, histopathology, biochemical indicators, and Western blot analysis. Metabonomics technology was further performed to evaluate the endogenous metabolites profiling systematically. According to the results of pattern recognition analysis, a clear separation of MI/R injury in the Model group and Sham group was achieved and SM-DOO pretreatment group was located much closer to the Sham group than the Model group, which was consistent with results of biochemistry and histopathological assay. Moreover, potential biomarkers were identified to elucidate the drug mechanism of SM-DOO, which may be related with pathways of energy metabolism, especially tricarboxylic acid (TCA) cycle (citric acid) and ß-oxidation of fatty acids (3-hydroxybutyric, palmitoleic acid, heptadecanoic acid, and arachidonic acid). In addition, the protein expressions of p-AMPK and p-ACC in the SM-DOO group were significantly elevated, while the levels of carnitine palmitoyl-CoA transferase-1 (CPT-1), p-PDK, and p-PDC were dramatically reduced by SM-DOO. In conclusion, SM-DOO pretreatment could ameliorate MI/R injury by intervening with energy metabolism, especially TCA cycle and ß-oxidation of fatty acids. This work showed that the metabonomics method combinate with conventional pharmacological methods is a promising tool in the efficacy and mechanism research of traditional Chinese medicines.


Assuntos
Dalbergia/química , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Salvia miltiorrhiza/química , Animais , Biomarcadores/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Cromatografia Gasosa , Análise Discriminante , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas , Traumatismo por Reperfusão Miocárdica/sangue , Análise de Componente Principal , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
10.
Oncotarget ; 8(67): 111608-111622, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340078

RESUMO

Ischemic stroke is a cerebrovascular thrombotic disease with high morbidity and mortality. Qi deficiency blood stasis (QDBS) and Yin deficiency blood stasis (YDBS) are the two major subtypes of ischemic stroke according to the theories of traditional Chinese medicine. This study was conducted to distinguish these two syndromes at transcriptomics level and explore the underlying mechanisms. Male rats were randomly divided into three groups: sham group, QDBS/MCAO group and YDBS/MCAO group. Morphological changes were assessed after 24 h of reperfusion. Microarray analysis with circulating mRNA was then performed to identify differential gene expression profile, gene ontology and pathway enrichment analyses were carried out to predict the gene function, gene co-expression and pathway networks were constructed to identify the hub biomarkers, which were further validated by western blotting and Tunel staining analysis. Three subsets of dysregulated genes were acquired, including 445 QDBS-specific genes, 490 YDBS-specific genes and 1676 blood stasis common genes. Our work reveals for the first time that T cell receptor, MAPK and apoptosis pathway were identified as the hub pathways based on the pathway networks, while Nfκb1, Egfr and Casp3 were recognized as the hub genes by co-expression networks. This research helps contribute to a clearer understanding of the pathological characteristics of ischemic stroke with QDBS and YDBS syndrome, the proposed biomarkers might provide insight into the accurate diagnose and proper treatment for ischemic stroke with blood stasis syndrome.

11.
Sci Rep ; 6: 39809, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28009003

RESUMO

Vascular remodeling is an important complication of hypertension with oxidative stress-related profibrotic pathways involved. The transforming growth factor ß1 (TGF-ß1) has been shown to be a potential target of vasoprotection, and has multiple roles in vascular remodeling. Acetyl-11-Keto-ß-Boswellic Acid (AKBA) is one of the active principles of Boswellic acids, and shows antioxidant activity in many diseases. The study is to determine effects of AKBA on systemic oxidative stress of hypertension and vascular remodeling. In the experiments, spontaneously hypertensive rats (SHR) were used. And in vitro, fibroblast was pretreated with AKBA before Ang II stimuli. In the results, treatment of AKBA markedly reduced oxidative stress, and decreased vascular remodeling by restoring vascular wall parameters and improving vascular reactivity. AKBA dramatically reduced TGF-ß1 and Smad3 expression, as shown in immunofluorescence and immunohistochemistry. In cultured fibroblast, AKBA decreased intracellular ROS levels. Cell viability and proliferation, as well as migration were inhibited by AKBA. Additionally, treatment of AKBA significantly decreased TGF-ß1 secretion in culture supernatant. Expression of TGF-ß1, Smad3, P-Smad3 and Smad7 were also decreased by AKBA in fibroblast. In conclusion, AKBA is able to attenuate oxidative stress and profibrotic mechanisms, and improve vascular remodeling in hypertension through TGF-ß1/Smad3 pathway.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/biossíntese , Triterpenos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Fibrose , Hipertensão/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Mol Med ; 37(3): 603-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26821334

RESUMO

Oxidative stress plays an important role in the pathogenesis of various liver diseases. Safflower yellow B (SYB) has been reported to protect the brain against damage induced by oxidative stress; however, whether SYB can also protect hepatocytes from oxidative stress remains unknown. In the present study, to determine whether pre-treatment with SYB reduces hydrogen peroxide (H2O2)­induced oxidative stress in HepG2 cells, we investigated H2O2-induced oxidative damage to HepG2 cells treated with or without SYB. Cell viability was measured by MTT assay and cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay. The activities of the antioxidant enzymes, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were determined using respective kits. Intracellular reactive oxygen species (ROS) accumulation in the HepG2 cells was monitored using the fluorescent marker, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). Cell apoptosis was evaluated by determining the activity of caspase-3 and by Annexin V/propidium iodide (PI) double staining. Protein expression levels were measured by western blot analysis, and the levels of related cellular kinases were also determined. H2O2 induced pronounced injury to the HepG2 cells, as evidenced by increased levels of malondialdehyde (MDA) and ROS, the decreased activity of SOD and GSH-Px, the increased activitation of caspase-3 and cell apoptosis, and the loss of mitochondrial membrane potential. SYB significantly inhibited the damaging effects of H2O2, indicating that it protected the cells against H2O2-induced oxidative damage. Moreover, pre-treatment with SYB increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1) which are peroxiredoxins. SYB also significantly increased the phosphorylation of AKT. However, this inductive effect was blunted in the presence of the AKT inhibitor, LY294002. The findings of our study suggest that the activation of the AKT/Nrf2 pathway is involved in the cytoprotective effects of SYB against oxidative stress. Our findings provide new insight into the cytoprotective effects of SYB and the possible mechanisms underlying these effects. Thus, SYB may prove to be of therapeutic value for the treatment of various liver diseases.


Assuntos
Chalcona/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Chalcona/farmacologia , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
15.
J Chromatogr Sci ; 50(2): 108-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22298759

RESUMO

An isocratic reversed-phase high-performance liquid chromatography method with UV detection is developed and validated for the simultaneous determination of ketamine, xylazine, and midazolam in canine plasma. Analytes are extracted from alkalinized samples into diethyl ether-methylene chloride (7:3, v:v) using single-step liquid-liquid extraction. Chromatographic separation is performed on a C(18) column using a mobile phase containing an acetonitrile-methanol-10 mM sodium heptanesulfonate buffer adjusted to pH 3, with glacial acetic acid (44:10:46, v:v) at a detection wavelength of 210 nm, with a total runtime of 10 min. The calibration is linear over the range of 78.125-5000 ng/mL for ketamine and 15.625-1000 ng/mL for xylazine and midazolam. The limits of detection are 17.8, 10.3, and 15.1 ng/mL for ketamine, xylazine, and midazolam, respectively. The extraction recoveries are 76.1% for ketamine, 91.0% for midazolam, and 78.2% for xylazine. The method is successfully used for clinical and pharmacokinetic studies of the three-drug fixed dose combination formulations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ketamina/sangue , Midazolam/sangue , Espectrofotometria Ultravioleta/métodos , Xilazina/sangue , Animais , Cães , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...